4,134 research outputs found

    Dimensionless Coupling of Superstrings to Supersymmetric Gauge Theories and Scale Invariant Superstring Actions

    Full text link
    We construct new superstring actions which are distinguished from standard superstrings by being space-time scale invariant. Like standard superstrings, they are also reparametrization invariant, space-time supersymmetric, and invariant under local scale transformations of the world sheet. We discuss scenarios in which these actions could play a significant role, in particular one which involves their coupling to supersymmetric gauge theories.Comment: 9 pages, LaTe

    Nonadiabatic scattering of a quantum particle in an inhomogenous magnetic field

    Full text link
    We investigate the quantum effects, in particular the Landau-level quantization, in the scattering of a particle the nonadiabatic classical dynamics of which is governed by an adiabatic invariant. As a relevant example, we study the scattering of a drifting particle on a magnetic barrier in the quantum limit where the cyclotron energy is much larger than a broadening of the Landau levels induced by the nonadiabatic transitions. We find that, despite the level quantization, the exponential suppression exp(2πd/δ)\exp(-2\pi d/\delta) (barrier width dd, orbital shift per cyclotron revolution δ\delta) of the root-mean-square transverse displacement experienced by the particle after the scattering is the same in the quantum and the classical regime.Comment: 4 page

    On the validity of ADM formulation in 2D quantum gravity

    Full text link
    We investigate 2d gravity quantized in the ADM formulation, where only the loop length l(z)l(z) is retained as a dynamical variable of the gravitation, in order to get an intuitive physical insight of the theory. The effective action of l(z)l(z) is calculated by adding scalar fields of conformal coupling, and the problems of the critical dimension and the time development of ll are addressed.Comment: 12 page

    Effects of Strain coupling and Marginal dimensionality in the nature of phase transition in Quantum paraelectrics

    Full text link
    Here a recently observed weak first order transition in doped SrTiO3 is argued to be a consequence of the coupling between strain and order parameter fluctuations. Starting with a semi-microscopic action, and using renormalization group equations for vertices, we write the free energy of such a system. This fluctuation renormalized free energy is then used to discuss the possibility of first order transition at zero temperature as well as at finite temperature. An asymptotic analysis predicts small but a finite discontinuity in the order parameter near a mean field quantum critical point at zero temperature. In case of finite temperature transition, near quantum critical point such a possibility is found to be extremely weak. Results are in accord with some experimental findings on quantum paraelectrics such as SrTiO3 and KTaO3.Comment: Revised versio

    Zero-frequency anomaly in quasiclassical ac transport: Memory effects in a two-dimensional metal with a long-range random potential or random magnetic field

    Get PDF
    We study the low-frequency behavior of the {\it ac} conductivity σ(ω)\sigma(\omega) of a two-dimensional fermion gas subject to a smooth random potential (RP) or random magnetic field (RMF). We find a non-analytic ω\propto|\omega| correction to Reσ{\rm Re} \sigma, which corresponds to a 1/t21/t^2 long-time tail in the velocity correlation function. This contribution is induced by return processes neglected in Boltzmann transport theory. The prefactor of this ω|\omega|-term is positive and proportional to (d/l)2(d/l)^2 for RP, while it is of opposite sign and proportional to d/ld/l in the weak RMF case, where ll is the mean free path and dd the disorder correlation length. This non-analytic correction also exists in the strong RMF regime, when the transport is of a percolating nature. The analytical results are supported and complemented by numerical simulations.Comment: 12 pages, RevTeX, 7 figure

    Stability of the U(1) spin liquid with spinon Fermi surface in 2+1 dimensions

    Full text link
    We study the stability of the 2+1 dimensional U(1) spin liquid state against proliferation of instantons in the presence of spinon Fermi surface. By mapping the spinon Fermi surface into an infinite set of 1+1 dimensional chiral fermions, it is argued that an instanton has an infinite scaling dimension for any nonzero number of spinon flavors. Therefore, the spin liquid phase is stable against instantons and the non-compact U(1) gauge theory is a good low energy description.Comment: 14 pages, 7 figures, v3) minor corrections, to appear in PR

    Strong magnetoresistance induced by long-range disorder

    Get PDF
    We calculate the semiclassical magnetoresistivity ρxx(B)\rho_{xx}(B) of non-interacting fermions in two dimensions moving in a weak and smoothly varying random potential or random magnetic field. We demonstrate that in a broad range of magnetic fields the non-Markovian character of the transport leads to a strong positive magnetoresistance. The effect is especially pronounced in the case of a random magnetic field where ρxx(B)\rho_{xx}(B) becomes parametrically much larger than its B=0 value.Comment: REVTEX, 4 pages, 2 eps figure

    Laminar boundary layer in conditions of natural transition to turbulent flow

    Get PDF
    Results of experimental study of regularities of a natural transition of a laminar boundary layer to a turbulent layer at low subsonic air flow velocities are presented, analyzed and compared with theory and model experiments
    corecore